Contoh Soal Trigonometri Dan Pembahasannya Download
contoh soal trigonometri dan pembahasannya
1. contoh soal trigonometri dan pembahasannya
Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai dari sin p cos q = …
a. 1/6. b. 2/6 c. 3/6 d. 4/6 e. 5/6 Jawaban :
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6
ini contoh soal dan pembahasannya .
2. contoh soal trigonometri dan pembahasannya
cos 25 + cos 115
soalnya = -----------------------
cos 25 - cos 115
maaf kalau salah
3. contoh soal dan pembahasan integral trigonometri
Kepada Admin terhormat.. Itu yang anda hapus itu file saya.. jadi jangan sembarangan hapus ya..
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh6lUeKPc-IW9kVgH8Kq0VRZUdiJGDphATJi4K1aOV2YNRHfwIjZvzhXlRsN1-oJ_HXSwoLAjeQ0DDOXpG3Up5xOnUfvnd7NWgFZe8PFkJwSrmjaprGcW7vPTp0z75FgJUuyQrWoP9hr-U_/s1600/DSCN6473.JPG
kalau saudara penghapus tidak percaya, silahkan buka http://pkkdpk.blogspot.com/2014/08/blog-post_28.html
saya lakukan ini karena file fotonya tidak bisa masuk ke brainly... jadi tolong ga usah main2 jadi admin deh
4. ***contoh soal trigonometri kelas 10 dan pembahasannya dong
dalam bentuk lain 3sin^2 x - 2cos^2 x =.....
jawab :
sin^2x + cos^2x=1 =>cos^2x= 1-sin^2x
sehingga:
3sin^2x-2cos^2x
= 3sin^2x-2(1-sin^2x)
=3sin^2x-2+2sin^2x
=5sin^2x-2
5. **contoh soal trigonometri kelas 10 dan pembahasannya dong
IDENTITAS TRIGONOMETRI :
sederhanakan
1. Tan A x cos A
2. Tan A x Cosec A
jawab :
1. [tex] \frac{sin A}{cos A} [/tex] X cos A
dapat disederhanakan dengan cara mencoret/eliminasi cos A. Maka hasilnya sin A
2. [tex] \frac{sin A}{cos A} [/tex] x [tex] \frac{1}{sin A} [/tex] dapat disederhanakan dengan mencoret/eliminasi sin A, lalu mendapat hasil [tex] \frac{1}{cos A} [/tex] dan dapat disederhanakan lagi menjadi Sec A
6. Tuliskan contoh soal identitas trigonometri, jawabannya dan pembahasannya.
Diketahui :
Pembuktian suatu identitas trigonometri
Ditanya :
Contoh soal pembuktian identitas trigonometri ... ?
Jawab :
1. Soal : Buktikan (sin 2x)/sin x = (1 + cos 2x)/cos x
Penyelesaian :
Pembuktian dari kiri dan kanan langsung.
[tex]\frac{sin2x}{sinx} = \frac{1+cos2x}{cosx}\\\frac{2.sinx.cosx}{sinx} = \frac{(sin^2x+cos^2x)+(cos^2x - sin^2x)}{cosx}\\2.cosx = \frac{2.cos^2x}{cosx}\\2.cosx = 2cosx[/tex]Terbukti bahwa (sin 2x)/sin x = (1 + cos 2x)/cos x adalah benar.
2. Soal : Buktikan (1 - cos 2x)/(1 - cos² x) = 2
Penyelesaian :
Pembuktian dari kiri.
[tex]\frac{1-cos2x}{1-cos^2x} = 2\\\frac{(sin^2x +cos^2x)-(cos^2x - sin^2x)}{sin^2x} = 2\\\frac{2sin^2x}{sin^2x} = 2\\2 = 2[/tex]Terbukti bahwa (1 - cos 2x)/(1 - cos² x) = 2 adalah benar.
3. Soal : Buktikan cosec 2x = (1 + cot² x)/(2.cot x)
Penyelesaian :
Pembuktian dari kanan.
[tex]cosec2x = \frac{1+cot^2x}{2.cotx}\\cosec2x = \frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{2.\frac{cosx}{sinx}}\\cosec2x = \frac{\frac{sin^2x+cos^2x}{sin^2x}}{\frac{2.cosx}{sinx}}\\cosec2x = \frac{\frac{1}{sin^2x}}{\frac{2.cosx}{sinx}}\\cosec2x = \frac{1}{sin^2x} . \frac{sinx}{2.cosx}\\cosec2x = \frac{1}{2.sinx.cosx}\\cosec2x = \frac{1}{sin2x}\\cosec2x = cosec2x[/tex]Terbukti bahwa cosec 2x = (1 + cot² x)/(2.cot x) adalah benar.
7. contoh soal logika dan pembahasan tentang persamaan kuadrat dan trigonometri
soal logika >> Tentukan negasi dari pernyataan-pernyataan berikut:
a) Hari ini Jakarta banjir.
b) Kambing bisa terbang.
c) Didi anak bodoh
d) Siswa-siswi SMANSA memakai baju batik pada hari
Persamaan kuadrat merupakan bentuk persamaan yang pangkat terbesar variabelnya adalah 2.
Trigonometri merupakan cabang ilmu matematika yang mempelajari tentang garis dan sudut suatu segitiga.
Hubungan antara garis dan sudut ini lah yang akan menjadi fungsi-fungsi trigonometri.
8. 10 contoh Soal dan Pembahasan soal UN SMA bab Trigonometri
Maaf kalo salah
Semoga membantu☺
9. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????
1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat
10. contoh soal trigonometri kelas 10 dan pembahasannya dong
Nyatakan dalam sudut lancip
1. sin 100⁰
pnylsaian : sin 100⁰=sin ( 180-100)⁰
=sin 80⁰
2. sin 146
pnylsaian : sin 146⁰ = sin ( 180-146)⁰
= sin 34⁰
3. cos 95⁰
pnylesaian : cos 95⁰ = cos (180-95)⁰
= -cos 85⁰
4. tan 136⁰
pnyelesaian : tan 136⁰=tan (180-136)⁰
= -tan 44
5. sin 193
pnyelesaian sin 193⁰ =sin(180+193)⁰
= -sin 13⁰
6. cos 200⁰
pnyelesaian cos 200⁰=cos(180+200)⁰
=- cos 20⁰
7. sin (-13)⁰
pnyelesaian sin (-13) ⁰= -sin 13⁰
8. cos (-35)⁰
pnyelesaian cos (-35)⁰= cos 35⁰ -> khusus cos tettap +
9. tan (-68)
pnyelesaian : tan (-68)=tan 68
10. cos 330⁰
penyelesaian: cos 330⁰=cos(360-330)
=cos 60
=1/2√3Tentukan perbandingan trigonometri sudut lancipnya
1. sin 300°
2. cos 315°
3. tan 225°
pembahasan
1. sin 300° = sin (360 - 60)°
= -sin 60°
= -1/2 √3
2. cos 315° = cos (270 + 45)°
= sin 45°
= 1/2 √2
3. tan 225° = tan (180 + 45)°
= tan 45°
= 1
11. 2 contoh soal tentang persamaanTrigonometri sekalian denganPembahasannya
Jawaban:
1.untuk 0°≤×≥ 360° tentukan himpunan penyelesaian dari cos × = ½
jawab: { 60°,300°}
Penjelasan dengan langkah-langkah:
cos x= ½
(a) x = 60° + k.360°
k = 0. ×=60+0=60° (m)
k = 1. ×=60+360=420° (Tm)
atau
(b) x = -60° + k. 360
x= -60 + k.360
k = 0. x = -60 + 0= -60° (Tm)
k= 1. x = -60+360° = 300° (m)
hp= { 60°,300° } (B)
semoga membantu
12. contoh soal trigonometri kelas 10 dan pembahasannya dong**
Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad
Pembahasan
Konversi:
1 π radian = 180°
Jadi:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad
13. Contoh soal Turunan trigonometri atyran rantai dan pembahasannya
Lihat lampiran untuk contoh.
14. minta rumus dasar trigonometri dong.. sekalian contoh soal dan pembahasan
pada segitiga siku2
oada sudut selain 90°
sin = sisi depan / sisi miring
cos = sisi samping / sisi miring
tan = sisi depan / sisi samping
cosec = 1/sin
sec = 1/cos
cotan = 1/tan
15. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2
Pembahasan
1/2 adalah nilai cosinus dari 60°.
Sehingga
cos x = cos 60°
Cos x° = Cos a°
MAKA
x = a + k . 360
x = -a + k . 360
(i) x = 60° + k ⋅ 360°
k = 0 → x = 60 + 0 = 60 °
k = 1 → x = 60 + 360 = 420°
(ii) x = −60° + k⋅360
x = −60 + k⋅360
k = 0 → x = −60 + 0 = −60°
k = 1 → x = −60 + 360° = 300°
Himpunan penyelesaian yang diambil adalah:
HP = {60°, 300°}1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat
Contoh ❶
Himpunan penyelesaian dari pesamaan:
2sin x⁰ - √3 = 0, 0⁰ ≤ x ≤ 2π⁰ adalah .....
A. {π/3 , 2π/3}
B. {π/3 , π/6}
C. {π/3 , π/2}
D. {π/3 , 5π/6}
E. {2π/3 , 5π/6}
Pembahasan:
2sin x⁰ - √3 = 0
2sin x⁰ = √3
sin x⁰ = (1/2)√3
sin x⁰ = sin π/3⁰
x₁ = π/3 + k . 360 atau x₂ = (π - π/3) + k . 360
Untuk k = 0 maka:
x₁ = π/3
x₂ = 2π/3
Jadi, himpunan penyelesaiannya adalah {π/3 , 2π/3} -----> Jawaban: A
Posting Komentar untuk "Contoh Soal Trigonometri Dan Pembahasannya Download"