Lompat ke konten Lompat ke sidebar Lompat ke footer

Logaritma Dan Contoh Soal


Logaritma Dan Contoh Soal

contoh soal soal logaritma

1. contoh soal soal logaritma


Sederhanakanlah ! log 64 - log 128 - log 32 Soal No. 1
Ubah bentuk pangkat pada soal-soal berikut menjadi bentuk logaritma:
a) 23 = 8
b) 54 = 625
c) 72 = 49

Pembahasan
Transformasi bentuk pangkat ke bentuk logaritma:

Jika ba = c, maka blog c = a
a) 23 = 8 → 2log 8 = 3
b) 54 = 625 → 5log 625 = 4
c) 72 = 49 → 7log 49 = 2

Soal No. 2
Tentukan nilai dari:
a) 2log 8 + 3log 9 + 5log 125
b) 2log 1/8 + 3log 1/9 + 5log 1/125

Pembahasan
a) 2log 8 + 3log 9 + 5log 125
= 2log 23 + 3log 32 + 5log 53 = 3 2log 2 + 2 3log 3 + 3 5log 5
= 3 + 2 + 3 = 8

b) 2log 1/8 + 3log 1/9 + 5log 1/125
= 2log 2−3 + 3log 3−2 + 5log 5−3
= − 3 − 2 − 3 = − 8

Soal No. 3
Tentukan nilai dari
a) 4log 8 + 27log 9
b) 8log 4 + 27log 1/9

Pembahasan
a) 4log 8 + 27log 9
= 22log 23 + 33log 32
= 3/2 2log 2 + 2/3 3log 3
= 3/2 + 2/3 = 9/6 + 4/6 = 13/6

b) 8log 4 + 27log 1/9

23log 22 + 33log 3−2
= 2/3 2log 2 + (−2/3) 3log 3
= 2/3 − 2/3 = 0

Soal No. 4
Tentukan nilai dari:
a) √2log 8
b) √3log 27

Pembahasan
a) √2log 8
= 21/2log 23 = 3/0,5 2log 2 = 3/0,5 = 6

b) √3log 9
= 31/2log 32 = 2/0,5 3log 3 = 2/0,5 = 4

Soal No. 5
Diketahui:
log p = A
log q = B
Tentukan nilai dari log p3 q2

Pembahasan
log p3 q2 = log p3 + log q2 = 3 log p + 2 log q = 3A + 2B

Soal No. 6
Diketahui
log 40 = A dan log 2 = B, tentukan nilai dari log 20

Pembahasan
log 20 = log 40/2 = log 40 − log 2 = A − B

Soal No. 7
Diketahui 2log 7 = a dan 2log 3 = b. Tentukan nilai dari 6log 14

Pembahasan
2log 7 = a
log 7/ log 2 = a
log 7 = a log 2

2log 3 = b
log 3 / log 2 = b
log 3 = b log 2

6log 14 = log 14/log6

log 2.7 log 2 + log 7 log 2 + a log 2 log 2 (1 + a) (1 + a)
= _________ = ________________ = __________________ = ________________ = _________
log 2. 3 log 2 + log 3 log 2 + b log 2 log 2 (1 + b) (1 + b)

Soal No. 8

Diketahui 2log √ (12 x + 4) = 3. Tentukan nilai x

Pembahasan
2log √ (12 x + 4) = 3

Ruas kiri bentuknya log, ruas kanan belum bentuk log, ubah dulu ruas kanan agar jadi bentuk log. Ingat 3 itu sama juga dengan 2log 23 . Ingat rumus alog ab = b jadi

2log √( 12 x + 4) = 2log 23

Kiri kanan sudah bentuk log dengan basis yang sama-sama dua, hingga tinggal menyamakan yang di dalam log kiri-kanan atau coret aja lognya:

2log √( 12 x + 4) = 2log 23

√( 12 x + 4) = 23

√( 12 x + 4) = 8

Agar hilang akarnya, kuadratkan kiri, kuadratkan kanan. Yang kiri jadi hilang akarnya:

12 x + 4 = 82
12x + 4 = 64
12 x = 60
x = 60/12 = 5

Soal No. 9
Tentukan nilai dari 3log 5log 125

Pembahasan
3log 5log 125 = 3log 5log 53
= 3log 3 = 1

Soal No. 10
Diketahui 2log 3 = m dan 2log 5 = n . Tentukan nilai dari 2log 90

Pembahasan
log 3
2log 3 = _______ = m Sehingga log 3 = m log 2
log 2

log 5
2log 5 = _______ = n Sehingga log 5 = n log 2
log 2

log 32. 5 . 2 2 log 3 + log 5 + log 2
2log 90 = ___________________ = ______________________________
log 2 log 2

2 m log 2 + n log 2 + log 2
2log 90 = _________________________________________ = 2 m + n + 1
log 2

Soal No. 11
Nilai dari


A. 1
B. 2
C. 3
D. 5
E. 6

Pembahasan
Dari sifat logaritma berikut:


Soal disederhanakan menjadi


Soal No. 12
Nilai dari


A. 1
B. 2
C. 3
D. 5
E. 6

Pembahasan
Dari sifat yang sama:


Diperoleh hasil

2. contoh soal-soal logaritma


log 9 / log 27 =...?
Jawab :
log 9 / log 27
= log 3² / log 3³= 2. log 3 #sifat log ab = b. log a 3. log 3
= 2/3

3. Contoh soal logaritma


(2)log 4 = 2, (2)log 8 = 3

4. contoh soal logaritma


²log 64 = 
²log 4 + ²log 16 =
³log 27 + ³log 243 =
²log 4 + ²log 8 - ²log 16 =
³log 27 + ³log 9 + ²log 216 =

5. contoh soal logaritma


2 log 4 = 2 log 2pangkat2 = 2Log 10 = 1 , 12log 144 = 12

6. pengertian logaritmacara membuat grafik logaritmacontoh soal


logaritma adalah kebalikan dari bilangan berpangkat
contohnya:
2pangkat1=2 <=> 2log2=1

7. contoh soal logaritma


²log8+²log5-²log10
jwbannya.
=²log(8×5÷10)
=²log4
=²log2²
=2 ²log2
=2

8. Contoh soal logaritma?


⁴log 20 - ⁴log 5 + ⁴log 8

= ⁴log (20 . 8 / 5)

= ⁴log 32

= ^(2²)log 2⁵

= 5/2 . ²log 2

= 5/2 . 1

= 5/2

Mapel :  Matematika

Kelas :  9

Materi :  Bab 1 - Bilangan Berpangkat

Kata Kunci :  Logaritma

Kode Soal :  2

Kode Kategorisasi : 9.2.1

²log8 + ³log9 - ⁴log1/16
= ²log2³ + ³log3² - ⁴log4-²
= 3 + 2 - (-2)
= 5 + 2
= 7

9. Apa yang dimaksud dengan logaritma? Berikan 1 contoh soal logaritma !​


Jawaban:

Logaritma adalah suatu operasi invers atau kebalikan dari perpangkatan..

contoh: ²log 16 =….

Pembahasan:

^{2}log 16=^{2}log2^{4}

=4.^{2}log2

=4.1

=4

Contoh Soal 2

^{5}log100-^{5}log4=...

Pembasahan :

^{5}log100-^{5}log4=^{5}log\frac{100}{4}

=^{5}log25

=^{5}log5^{2}

=2.^{5}log5

=2.1

=2


10. contoh soal logaritma​


Jawaban:

contoh soal :

1. Diketahui log 3 = 0,332 dan log 2 = 0,225.maka log 18 dari soal tersebut adalah……..

a. 0,889

b. 0,556

c. 0,677

d. 0,876

Jawaban Dan penjelasan

Diket :

Log 3 = 0,332

Log 2 = 0,225

Ditanya: log 18 =…………….?

Jawaban:

Log 18 = log 9 . log 2

Log 18 = (log 3.log 3) . log 2

Log 18 = 2 . (0,332) + (0,225)

Log 18 = 0,664 + 0,225

Log 18 = 0,889

Jadi, log 18 pada soal diatas adalah 0,889. (A)

Jawaban:

1).³Iog 9=

2).5log 125 =

3).6 log 9 + 6 log 4=


11. contoh soal logaritma


Ubah bentuk pangkat pada soal-soal berikut menjadi bentuk logaritma: a) 23 = 8 b) 54 = 625 c) 72 = 49

12. Contoh soal Logaritma


 Jika 4log 64 = x    
Tentukan nilai x = ….           
Jawab:            
4log 64 = x 
 à 4x = 64   
 4x = 44                           
 x = 4.Logaritma komputer?
Ini logaritma pascal ya, yang paling sering jadi soal.
Var
    i: Integer ;
Begin
    i:=2;
Repeat
    i:=i+3
Write(i);
Until i=10;
End


Berapakah hasilnya?

13. contoh soal logaritma


2log2=1>>>2^1=2
2log1=0>>>2^0=1
Semoga bermanfaat, maaf kalau salah
-Kev
sederhanakan bentuk logaritma berikut
²log 12 + ²log 4 =

14. contoh soal logaritma


2log3 + 3 log 2

3log 2 +log 3²log64 5^log125 3^log81

15. contoh soal tentang logaritma​


Jawab:

1. Diketahui log 3 = 0,332 dan log 2 = 0,225.maka log 18 dari soal tersebut adalah……..

a. 0,889

b. 0,556

c. 0,677

d. 0,876

2. Ubahlah  bentuk pangkat pada soal-soal berikut ini  ke dalam bentuk logaritma:

24 = 16

58 = 675

27 = 48

3. Tentukanlah  nilai dari logaritma berikut ini:

Nilai pada logaritma (2log 8) + (3log 9) + (5log 125)

Nilai pada logaritma (2log 1/8)+(3log 1/9) + (5log 1/125)

4. Jika Diketahui 2log 8 = a dan 2log 4 = b. maka Tentukan nilai dari 6log 14

a. 1 /2

b. (1+2) / (2+1)

c. (a+1) / (b+2)

d. (1 +a) / (1+b)

5. Nilai dari (3log 5 – 3 log 15 + 3log 9)…… ?

a. 2

b. 1

c. 4

d. 5

Penjelasan dengan langkah-langkah:

semoga membantu


Video Terkait


Posting Komentar untuk "Logaritma Dan Contoh Soal"