Logaritma Dan Contoh Soal
contoh soal soal logaritma
1. contoh soal soal logaritma
Sederhanakanlah ! log 64 - log 128 - log 32 Soal No. 1
Ubah bentuk pangkat pada soal-soal berikut menjadi bentuk logaritma:
a) 23 = 8
b) 54 = 625
c) 72 = 49
Pembahasan
Transformasi bentuk pangkat ke bentuk logaritma:
Jika ba = c, maka blog c = a
a) 23 = 8 → 2log 8 = 3
b) 54 = 625 → 5log 625 = 4
c) 72 = 49 → 7log 49 = 2
Soal No. 2
Tentukan nilai dari:
a) 2log 8 + 3log 9 + 5log 125
b) 2log 1/8 + 3log 1/9 + 5log 1/125
Pembahasan
a) 2log 8 + 3log 9 + 5log 125
= 2log 23 + 3log 32 + 5log 53 = 3 2log 2 + 2 3log 3 + 3 5log 5
= 3 + 2 + 3 = 8
b) 2log 1/8 + 3log 1/9 + 5log 1/125
= 2log 2−3 + 3log 3−2 + 5log 5−3
= − 3 − 2 − 3 = − 8
Soal No. 3
Tentukan nilai dari
a) 4log 8 + 27log 9
b) 8log 4 + 27log 1/9
Pembahasan
a) 4log 8 + 27log 9
= 22log 23 + 33log 32
= 3/2 2log 2 + 2/3 3log 3
= 3/2 + 2/3 = 9/6 + 4/6 = 13/6
b) 8log 4 + 27log 1/9
23log 22 + 33log 3−2
= 2/3 2log 2 + (−2/3) 3log 3
= 2/3 − 2/3 = 0
Soal No. 4
Tentukan nilai dari:
a) √2log 8
b) √3log 27
Pembahasan
a) √2log 8
= 21/2log 23 = 3/0,5 2log 2 = 3/0,5 = 6
b) √3log 9
= 31/2log 32 = 2/0,5 3log 3 = 2/0,5 = 4
Soal No. 5
Diketahui:
log p = A
log q = B
Tentukan nilai dari log p3 q2
Pembahasan
log p3 q2 = log p3 + log q2 = 3 log p + 2 log q = 3A + 2B
Soal No. 6
Diketahui
log 40 = A dan log 2 = B, tentukan nilai dari log 20
Pembahasan
log 20 = log 40/2 = log 40 − log 2 = A − B
Soal No. 7
Diketahui 2log 7 = a dan 2log 3 = b. Tentukan nilai dari 6log 14
Pembahasan
2log 7 = a
log 7/ log 2 = a
log 7 = a log 2
2log 3 = b
log 3 / log 2 = b
log 3 = b log 2
6log 14 = log 14/log6
log 2.7 log 2 + log 7 log 2 + a log 2 log 2 (1 + a) (1 + a)
= _________ = ________________ = __________________ = ________________ = _________
log 2. 3 log 2 + log 3 log 2 + b log 2 log 2 (1 + b) (1 + b)
Soal No. 8
Diketahui 2log √ (12 x + 4) = 3. Tentukan nilai x
Pembahasan
2log √ (12 x + 4) = 3
Ruas kiri bentuknya log, ruas kanan belum bentuk log, ubah dulu ruas kanan agar jadi bentuk log. Ingat 3 itu sama juga dengan 2log 23 . Ingat rumus alog ab = b jadi
2log √( 12 x + 4) = 2log 23
Kiri kanan sudah bentuk log dengan basis yang sama-sama dua, hingga tinggal menyamakan yang di dalam log kiri-kanan atau coret aja lognya:
2log √( 12 x + 4) = 2log 23
√( 12 x + 4) = 23
√( 12 x + 4) = 8
Agar hilang akarnya, kuadratkan kiri, kuadratkan kanan. Yang kiri jadi hilang akarnya:
12 x + 4 = 82
12x + 4 = 64
12 x = 60
x = 60/12 = 5
Soal No. 9
Tentukan nilai dari 3log 5log 125
Pembahasan
3log 5log 125 = 3log 5log 53
= 3log 3 = 1
Soal No. 10
Diketahui 2log 3 = m dan 2log 5 = n . Tentukan nilai dari 2log 90
Pembahasan
log 3
2log 3 = _______ = m Sehingga log 3 = m log 2
log 2
log 5
2log 5 = _______ = n Sehingga log 5 = n log 2
log 2
log 32. 5 . 2 2 log 3 + log 5 + log 2
2log 90 = ___________________ = ______________________________
log 2 log 2
2 m log 2 + n log 2 + log 2
2log 90 = _________________________________________ = 2 m + n + 1
log 2
Soal No. 11
Nilai dari
A. 1
B. 2
C. 3
D. 5
E. 6
Pembahasan
Dari sifat logaritma berikut:
Soal disederhanakan menjadi
Soal No. 12
Nilai dari
A. 1
B. 2
C. 3
D. 5
E. 6
Pembahasan
Dari sifat yang sama:
Diperoleh hasil
2. contoh soal-soal logaritma
log 9 / log 27 =...?
Jawab :
log 9 / log 27
= log 3² / log 3³= 2. log 3 #sifat log ab = b. log a 3. log 3
= 2/3
3. Contoh soal logaritma
(2)log 4 = 2, (2)log 8 = 3
4. contoh soal logaritma
²log 64 =
²log 4 + ²log 16 =
³log 27 + ³log 243 =
²log 4 + ²log 8 - ²log 16 =
³log 27 + ³log 9 + ²log 216 =
5. contoh soal logaritma
2 log 4 = 2 log 2pangkat2 = 2Log 10 = 1 , 12log 144 = 12
6. pengertian logaritmacara membuat grafik logaritmacontoh soal
logaritma adalah kebalikan dari bilangan berpangkat
contohnya:
2pangkat1=2 <=> 2log2=1
7. contoh soal logaritma
²log8+²log5-²log10
jwbannya.
=²log(8×5÷10)
=²log4
=²log2²
=2 ²log2
=2
8. Contoh soal logaritma?
⁴log 20 - ⁴log 5 + ⁴log 8
= ⁴log (20 . 8 / 5)
= ⁴log 32
= ^(2²)log 2⁵
= 5/2 . ²log 2
= 5/2 . 1
= 5/2
Mapel : Matematika
Kelas : 9
Materi : Bab 1 - Bilangan Berpangkat
Kata Kunci : Logaritma
Kode Soal : 2
Kode Kategorisasi : 9.2.1
²log8 + ³log9 - ⁴log1/16= ²log2³ + ³log3² - ⁴log4-²
= 3 + 2 - (-2)
= 5 + 2
= 7
9. Apa yang dimaksud dengan logaritma? Berikan 1 contoh soal logaritma !
Jawaban:
Logaritma adalah suatu operasi invers atau kebalikan dari perpangkatan..
contoh: ²log 16 =….
Pembahasan:
^{2}log 16=^{2}log2^{4}
=4.^{2}log2
=4.1
=4
Contoh Soal 2
^{5}log100-^{5}log4=...
Pembasahan :
^{5}log100-^{5}log4=^{5}log\frac{100}{4}
=^{5}log25
=^{5}log5^{2}
=2.^{5}log5
=2.1
=2
10. contoh soal logaritma
Jawaban:
contoh soal :
1. Diketahui log 3 = 0,332 dan log 2 = 0,225.maka log 18 dari soal tersebut adalah……..
a. 0,889
b. 0,556
c. 0,677
d. 0,876
Jawaban Dan penjelasan
Diket :
Log 3 = 0,332
Log 2 = 0,225
Ditanya: log 18 =…………….?
Jawaban:
Log 18 = log 9 . log 2
Log 18 = (log 3.log 3) . log 2
Log 18 = 2 . (0,332) + (0,225)
Log 18 = 0,664 + 0,225
Log 18 = 0,889
Jadi, log 18 pada soal diatas adalah 0,889. (A)
Jawaban:
1).³Iog 9=
2).5log 125 =
3).6 log 9 + 6 log 4=
11. contoh soal logaritma
Ubah bentuk pangkat pada soal-soal berikut menjadi bentuk logaritma: a) 23 = 8 b) 54 = 625 c) 72 = 49
12. Contoh soal Logaritma
Jika 4log 64 = x
Tentukan nilai x = ….
Jawab:
4log 64 = x
à 4x = 64
4x = 44
x = 4.Logaritma komputer?
Ini logaritma pascal ya, yang paling sering jadi soal.
Var
i: Integer ;
Begin
i:=2;
Repeat
i:=i+3
Write(i);
Until i=10;
End
Berapakah hasilnya?
13. contoh soal logaritma
2log2=1>>>2^1=2
2log1=0>>>2^0=1
Semoga bermanfaat, maaf kalau salah
-Kev
sederhanakan bentuk logaritma berikut
²log 12 + ²log 4 =
14. contoh soal logaritma
2log3 + 3 log 2
3log 2 +log 3²log64 5^log125 3^log81
15. contoh soal tentang logaritma
Jawab:
1. Diketahui log 3 = 0,332 dan log 2 = 0,225.maka log 18 dari soal tersebut adalah……..
a. 0,889
b. 0,556
c. 0,677
d. 0,876
2. Ubahlah bentuk pangkat pada soal-soal berikut ini ke dalam bentuk logaritma:
24 = 16
58 = 675
27 = 48
3. Tentukanlah nilai dari logaritma berikut ini:
Nilai pada logaritma (2log 8) + (3log 9) + (5log 125)
Nilai pada logaritma (2log 1/8)+(3log 1/9) + (5log 1/125)
4. Jika Diketahui 2log 8 = a dan 2log 4 = b. maka Tentukan nilai dari 6log 14
a. 1 /2
b. (1+2) / (2+1)
c. (a+1) / (b+2)
d. (1 +a) / (1+b)
5. Nilai dari (3log 5 – 3 log 15 + 3log 9)…… ?
a. 2
b. 1
c. 4
d. 5
Penjelasan dengan langkah-langkah:
semoga membantu
Posting Komentar untuk "Logaritma Dan Contoh Soal"